Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude.
نویسندگان
چکیده
There is an expectation that repeated daily exposures to normobaric hypoxia (NH) will induce ventilatory acclimatization and lessen acute mountain sickness (AMS) and the exercise performance decrement during subsequent hypobaric hypoxia (HH) exposure. However, this notion has not been tested objectively. Healthy, unacclimatized sea-level (SL) residents slept for 7.5 h each night for 7 consecutive nights in hypoxia rooms under NH [n = 14, 24 ± 5 (SD) yr] or "sham" (n = 9, 25 ± 6 yr) conditions. The ambient percent O(2) for the NH group was progressively reduced by 0.3% [150 m equivalent (equiv)] each night from 16.2% (2,200 m equiv) on night 1 to 14.4% (3,100 m equiv) on night 7, while that for the ventilatory- and exercise-matched sham group remained at 20.9%. Beginning at 25 h after sham or NH treatment, all subjects ascended and lived for 5 days at HH (4,300 m). End-tidal Pco(2), O(2) saturation (Sa(O(2))), AMS, and heart rate were measured repeatedly during daytime rest, sleep, or exercise (11.3-km treadmill time trial). From pre- to posttreatment at SL, resting end-tidal Pco(2) decreased (P < 0.01) for the NH (from 39 ± 3 to 35 ± 3 mmHg), but not for the sham (from 39 ± 2 to 38 ± 3 mmHg), group. Throughout HH, only sleep Sa(O(2)) was higher (80 ± 1 vs. 76 ± 1%, P < 0.05) and only AMS upon awakening was lower (0.34 ± 0.12 vs. 0.83 ± 0.14, P < 0.02) in the NH than the sham group; no other between-group rest, sleep, or exercise differences were observed at HH. These results indicate that the ventilatory acclimatization induced by NH sleep was primarily expressed during HH sleep. Under HH conditions, the higher sleep Sa(O(2)) may have contributed to a lessening of AMS upon awakening but had no impact on AMS or exercise performance for the remainder of each day.
منابع مشابه
Effectiveness of preacclimatization strategies for high-altitude exposure.
Acute mountain sickness (AMS) and large decrements in endurance exercise performance occur when unacclimatized individuals rapidly ascend to high altitudes. Six altitude and hypoxia preacclimatization strategies were evaluated to determine their effectiveness for minimizing AMS and improving performance during altitude exposures. Strategies using hypobaric chambers or true altitude were much mo...
متن کاملAcute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia.
Acute mountain sickness (AMS) strikes those in the mountains who go too high too fast. Although AMS has been long assumed to be due solely to the hypoxia of high altitude, recent evidence suggests that hypobaria may also make a significant contribution to the pathophysiology of AMS. We studied nine healthy men exposed to simulated altitude, normobaric hypoxia, and normoxic hypobaria in an envir...
متن کاملAcute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia
Acute mountain sickness (AMS), characterized by headache, nausea, fatigue, and dizziness when unacclimatized individuals rapidly ascend to high altitude, is exacerbated by exercise and can be disabling. Although AMS is observed in both normobaric (NH) and hypobaric hypoxia (HH), recent evidence suggests that NH and HH produce different physiological responses. We evaluated whether AMS symptoms ...
متن کاملDiscerning normobaric and hypobaric hypoxia: significance of exposure duration.
TO THE EDITOR: We read a recently published article (4) with great interest. The authors performed a rigorously controlled study scrutinizing the possible differences in cardiorespiratory responses, control of breathing, and acute mountain sickness (AMS) incidence during short-term (6 h) exposures to hypobaric (HH) and normobaric hypoxia (NH). We commend the authors for their smart experimental...
متن کاملEffect of Repeated Normobaric Hypoxia Exposures during Sleep
5 Charles S. Fulco, Stephen R. Muza, Beth Beidleman, Robby Demes, 6 Janet Staab, Juli Jones, Allen Cymerman 7 8 Thermal and Mountain Medicine Division 9 10 November 2010 11 U.S. Army Research Institute of Environmental Medicine 12 Natick, MA 01760-5007 13 14 RUNNING HEAD: Normobaric hypoxia pre-treatment and altitude exposure 15 CORRESPONDING AUTHOR: 16 Charles S. Fulco, Sc.D. 17 Thermal and Mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 300 2 شماره
صفحات -
تاریخ انتشار 2011